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ABSTRACT

The Nationwide Network of Networks (NNoN) concept was introduced by the National Research Council to

address the growingneed for a nationalmesoscaleobserving systemand the continuedadvancement toward accurate

high-resolution numerical weather prediction. The research test bed known as theDallas–FortWorth (DFW)Urban

Demonstration Network was created to experiment with many kinds of mesoscale observations that could be used

in a data assimilation system. Many nonconventional observations, including Earth Networks and CitizenWeather

ObserverProgramsurface stations, are combinedwith conventional operational data to form the test bednetwork.A

principal component of theNNoNeffort is the quantification of observation impact from several different sources of

information. In this study, the GSI-based EnKF system was used together with theWRF-ARWModel to examine

impacts of observations assimilated for forecasting convection initiation (CI) in the 3April 2014 hail storm case.Data

denial experiments tested the impact of high-frequency (5min) assimilation of nonconventional data on the timing

and location ofCI and subsequent storm evolution. Results showed nonconventional observations were necessary to

capture details in the dryline structure causing localized enhanced convergence and leading to CI. Diagnosis of

denial-minus-control fields showed the cumulative influenceeachobservingnetworkhadon the resultingCI forecast.

It was found that most of this impact came from the assimilation of thermodynamic observations in sensitive areas

along the dryline gradient. Accurate metadata were found to be crucial toward the future application of non-

conventional observations in high-resolution assimilation and forecast systems.

1. Introduction

With the increasing sophistication of data assimilation

(DA) methods and accompanying numerical weather

prediction (NWP) models, there is great potential to in-

crease our understanding and forecasting accuracy of

high-impact severe weather events. As operational NWP

forecasts move toward grid resolutions that resolve

convection explicitly, dense observations are needed

in both space and time to be able to capture the small-

scale and rapidly evolving features of such severe

events. A report by the U.S. National Research Council

(NRC 2009) underscored the need for a national me-

soscale network of observations and recommended the

integration of existing and future mesoscale observa-

tions into a Nationwide Network of Networks (NNoN).

The report further recommended the implementation

of research test beds in order to objectively evaluateCorresponding author: Nicholas A. Gasperoni, ngaspero@ou.edu
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the impacts of proposed observing systems for the

NNoN concept. Such test beds facilitate collaboration

among researchers, forecasters, measurement special-

ists, and the private sector to accelerate the transition

from research of observing systems to their operational

implementation (Dabberdt et al. 2005; NRC 2009).

The Collaborative Adaptive Sensing of the Atmo-

sphere (CASA; McLaughlin et al. 2009) Dallas–Fort

Worth (DFW) Urban Demonstration Network (here-

after DFW test bed) was established as a test bed to

carry out the vision of the NNoN concept (NRC 2012).

Many in situ surface and remote sensing observation

systems have been implemented for the DFW test bed.

Surface observing networks include Earth Networks

surface stations (ERNET; Earth Networks 2017), ama-

teur stations from the Citizen Weather Observer

Program (CWOP; Chadwick 2014), truck-mounted ob-

servations from the Mobile Platform Environmental

Data Network (MoPED; Heppner 2013), and weather

stations operated by Understory Weather (2015). Re-

mote sensing observations include seven X-band

radars operated by CASA, two SODARs operated by

WeatherFlow (2017), and three microwave radiometers

supplied by Radiometrics in partnership with Earth

Networks (Bosse et al. 2012). One important goal of

the DFW test bed is to measure the impacts from each

of these observing systems in robust state-of-the-art

DA and forecasting systems.

Quantification of forecast impact from different real

observational systems is traditionally done through ob-

serving system experiments (OSEs). There is an ever-

expanding array of OSE-related research encompassing

a wide variety of subtopics in NWP forecasting. The first

OSEs were used to test the impact of mainly satellite and

upper-air data on forecasts of synoptic systems with

global models (e.g., Andersson et al. 1991; Zapotocny

et al. 2002, 2007). With the increase in computing

power and expanding use of observation networks,

more recent OSEs tested data impacts using more

sophisticated hybrid DA methods (e.g., Kutty and

Wang 2015) and have included impacts of assimilat-

ing GPS-derived precipitable water, mesonet obser-

vations, and wind profiler data (e.g., Benjamin et al.

2010). Other recent OSEs have focused on specific re-

gions and weather types (e.g., Singh et al. 2014; Coniglio

et al. 2016; Zhang et al. 2016). With the increasing use

of regional models at convection-allowing resolutions

(#4km), OSE studies have also focused on the effects of

assimilating Doppler radar radial winds and reflectivity

on high-resolution forecasts of deep convection (e.g.,

Schenkman et al. 2011a,b; Snook et al. 2015).

The 2009 NRC report noted that the highest observa-

tional need is measurements of the planetary boundary

layer (PBL), the lowest part of the atmosphere directly

affected by the surface of Earth (NRC 2009). Many me-

soscale features are prominently featured in the PBL,

including horizontal convective rolls, surface boundaries

such as drylines and fronts, and other gradients and di-

urnal variations influenced by topography. While radar

data provide crucial measurements of ongoing pre-

cipitating systems, the current network of S-band radars

overshoots a large part of the PBL. Additionally, radar

data do not directly measure temperature or moisture, so

important features that may trigger or maintain convec-

tion are missed, such as areas of enhanced moisture

convergence or location and strength of cold pools. For

these reasons, recent high-resolution DA studies have

placed increasing emphasis on the assimilation of meso-

net observations in addition to radar data (e.g., Carlaw

et al. 2015; Johnson et al. 2015; Snook et al. 2015; Chen

et al. 2016). Despite positive results, surface observations

remain an operationally underutilized dataset, partly due

to mismatches between coarse model terrain and actual

observation heights (e.g., Ancell et al. 2011; Pu et al. 2013)

and other concerns about siting and instrument quality.

One fundamental limitation of radar data is the in-

ability to measure preconvective environments and

features that lead to convection initiation (CI). Given

a favorable large-scale environment, variations on the

order of 1 g kg21 of specific humidity have a large in-

fluence on the existence and location of CI, owing to

small-scale features in the PBL such as dryline bulges

and convective rolls (Weckwerth 2000; Weckwerth and

Parsons 2006). Madaus and Hakim (2016) studied ob-

servable surface anomalies preceding isolated CI and

found that warm 2-m temperature anomalies were

present 90–170min prior to precipitation, with detect-

able anomalies in moisture, wind, and pressure up to

60min prior and strong vertical correlations. Thus, the

prediction of CI can be potentially improved with

the utilization of mesonet surface observations, even

throughout the troposphere. Xue and Martin (2006a)

and Liu and Xue (2008) explored the prediction of CI

of two separate cases as part of the International H2O

Project (IHOP; Weckwerth et al. 2004). They performed

hourly assimilation of mesonet observations in addition

to special IHOP upper-air and surface observations. Xue

and Martin (2006a) found moderate improvements in

the CI forecast; however, Liu and Xue (2008) found

mixed results, showing that reducing assimilation fre-

quency from 1 to 3h actually improved the forecast in

some ways. They concluded that the worse forecast was

due to a weakening of surface forcing caused by the

higher-frequency DA.

Sobash and Stensrud (2015, hereafter SS15) was the

first study to examine subhourly assimilation of mesonet
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observations for the prediction of CI. They assimilated

mesonet observations every 5min for 1, 2, and 3h prior

to CI using an ensemble Kalman filter (EnKF). Re-

sults showed that high-frequency assimilation of mes-

onet observations led to improvements in timing and

placement of CI as compared to hourly assimilation

experiments, with 3 h of 5-min cycling performing best.

SS15 concluded that mesonet observations provided

important information on the diurnal progression of

the dryline, including important small-scale variabil-

ity such as dryline surges, which helped to provide

more accurate initial conditions (ICs) and forecast.

Furthermore, frequent assimilation of mesonet observa-

tions helped constrain the positive moisture bias of the

PBL scheme used in their study. They note, however, that

frequent mesonet DA may not be as impactful in other

cases where model biases are minimal or where CI is

driven by more large-scale forcing rather than surface

features.

More recently, Madaus andHakim (2017) performed an

OSSE study examiningwhat spatial density of observations

is necessary to capture storm-scale CI processes accu-

rately, in the absence of strong synoptic- or mesoscale

forcing. They found that skillful and reliable forecasts

were produced when observations were at least 4 km in

spatial density. Unlike SS15, they found no impact in

assimilating observations earlier than 1 h prior to CI.

This suggests that for specifically convective-scale

features leading to CI, hourly assimilation no earlier

than 1 h prior to CI is the minimum requirement for

skillful forecasts. Another challenging area is the

prediction of nocturnal CI over theGreat Plains, where

the low-level jet and mesoscale convective system cold

pool outflow can take important roles in the process.

Degelia et al. (2018) found that the best CI prediction

occurred when in situ measurements were used to

analyze the mesoscale environment.

Although SS15 was an important foundation in showing

the benefit of frequent DA of surface mesonet observa-

tions, that work was focused on the use of mesonet data as

a whole, with the predominant impacts coming over areas

well covered by theOklahomaMesonet (McPherson et al.

2007) and West Texas Mesonet (Schroeder et al. 2005).

Unfortunately, many areas such as theDFWmetroplex do

not have a federal- or state-supported mesonet available.

To have the NNoN vision succeed for regions where there

are no mesonets, we must leverage the use of non-

conventional surface observations from other sources,

such as the CWOP and ERNET data within the DFW

test bed. A limited number of studies have explored

direct impacts of assimilating these nonconventional

surface observations for mesoscale analysis and fore-

casting (e.g., Tyndall and Horel 2013; Madaus et al. 2014;

Carlaw et al. 2015). In this work, we explore the use of

nonconventional surface observing networks within the

DFW area for the prediction of a CI event. In contrast to

SS15, we examine impacts from different nonconventional

networks individually to assess benefits and limitations

from using the different systems.

The first OSE study using nonconventional data within

the DFW test bed was done by Carlaw et al. (2015). They

tested the utility of nonconventional surface data, specif-

ically from CWOP and ERNET, on the forecast of a tor-

nadic supercell that caused EF3 damage. Results showed

that these nonconventional surface observations helped

improve the surface analysis of low-level thermodynamic

fields in an otherwise data-sparse region. This study is

different from Carlaw et al. (2015) in that we are using

these data to predict CI rather than as a supplement to

radar data for an ongoing storm. Additionally, this study

employs an ensemble-based assimilation system rather

than the 3DVar used by Carlaw et al. (2015), allowing

for comparisons of probabilistic forecast differences.

In section 2,we summarize the severeweather event used

for this study (3 April 2014) to further detail the different

observation sources available within the DFW test bed

for this case. Section 3 describes the experiment setup, in-

cluding model and DA configurations, and provides de-

scriptions of data denial experiments. In section 4, the

results of the denial experiments are discussed, with a di-

agnosis of impacts tied to observations that led to forecast

differences in ensemble CI performance. In section 5, the

case study is summarized with implications for potential

use of these nonconventional observations in future DA

systems.

2. Case overview: 3 April 2014

a. Summary, synoptic setup, and storm evolution

According to the National Centers for Environmental

Information (NCEI; NCDC 2014), severe storms in

the Dallas area on 3 April 2014 caused an estimated

$500million in damage, mainly inDenton County, Texas.

NCEI storm reports included all types of severe weather

across north Texas, including numerous hail reports,

with the largest up to softball-size (108mm; 4.25 in.)

diameter, a high wind report of 41ms21 (82 kt; 1 kt ’
0.5144ms21), and three confirmed tornadoes northeast

of the DFW area causing EF0 and EF1 damage (Fig. 1).

On the synoptic scale, a high-amplitude, positively

tilted short-wave trough was located over the central

and southern Rockies region at 1200 UTC 3 April

2014 (Fig. 2a). The troughprogressed into aneutral tilt with

a region of upper-level divergence extending from north-

east Texas through Oklahoma, Arkansas, and Missouri by
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0000 UTC 4 April 2014 (Fig. 2b). In response, the associ-

ated surface low deepened and moved toward northeast

Missouri by 0000UTC4April.A cold front extended to the

southwest through Oklahoma and the Texas Panhandle,

with a dryline intersecting it over central Oklahoma and

extending southwest through Texas, west of the DFW area

(Fig. 3). The drylinemixed eastward through the afternoon

toward the western edge of the DFW domain. The Fort

Worth, Texas, radiosonde launched at 1200 UTC 3 April

showed a potentially unstable atmosphere available ahead

of the dryline near Dallas, with convective available

potential energy (CAPE) ranging from 2800 to

3500 J kg21 (Fig. 4). A substantial capping inversion

existed, inhibiting convection from developing before

1800 UTC. As the afternoon progressed, the cloud

layer just east of the dryline near Dallas cleared and

moved east (Fig. 3), allowing for the solar insolation

necessary to erode the capping inversion and result in

conditions favorable for CI.

The first CI event appears at 1820 UTC in south-

west Wise County, Texas (Fig. 5a). As this storm grows

and moves northeast, a second storm initiates at approxi-

mately 1900UTCapproximately 25km to the southwest of

the first CI event (Fig. 5b). Both storms develop into strong

hail-producing supercells as they travel through the north

side of theDFWtest bed (Fig. 5c). The second storm tracks

throughDenton, Texas, around 2030UTC, producing very

large hail up to 100mm around 2045UTC (Fig. 5d). Other

areas of CI occur outside of theDFWarea, including a cell

along the northern border of Comanche County, Texas,

around 2000 UTC (Fig. 5c) and additional locations

south and southwest between 2100 and 2200 UTC,

though these storms are generally not as well organized

(Fig. 5e). Additional storm development occurs after

2200 UTC, eventually producing the weak tornadoes

northeast of the DFW area. This study will focus

primarily on the first CI events that occur between

1800 and 1900 UTC, as these storms are responsible

for producing the damaging severe hail in Denton

County. Additionally, with no preexisting storms

nearby, the CI process for these specific storms may

be more clearly explored. Hail report locations are

shown for 1800–2200 UTC 3 April 2014 in Fig. 5f.

These reports were taken from NCDC (2014) as well as

the Meteorological Phenomena Identification near the

Ground (mPING; Elmore et al. 2014) project; mPING

observations use crowdsourcing to provide observations

of precipitation type across the United States. Hail is

reported from eastern Wise County through Denton

County and to the northeast.

b. Description of observations used

The DFW test bed is a medley of many observa-

tional platforms, summarized in Table 1. Observing

systems are separated into two categories: conven-

tional and nonconventional. Here, conventional data

FIG. 1. SPC preliminary storm reports valid from 1200UTC 3Apr to 1200UTC 4Apr 2014, overlaid on the day 1

categorical outlook issued at 1630 UTC 3 Apr 2014. Markers indicate tornado reports (red dots), significant hail

reports greater than 2-in. diameter (black triangles), other severe hail reports (green dots), significant wind reports

above 65 kt (black squares), and other severe wind reports (blue dots).
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refers to observations that are already typically used in

operational data assimilation systems. They include

upper-air soundings, wind profilers, aircraft data from

the Aircraft Communications Addressing and Re-

porting System (ACARS; Moninger et al. 2003), sur-

face data from Automated Surface Observing System

(ASOS) and Automated Weather Observing System

(AWOS), and integrated water vapor data from

global positioning satellite precipitable water vapor

(GPS PWV) observations. In this study, we also consider

the Oklahoma and West Texas Mesonets to be conven-

tional datasets with quality similar to ASOS and AWOS.

Additionally, radar data from the Next Generation

Weather Radar (NEXRAD) network of WSR-88D

S-band radars are used as a conventional data source.

Nonconventional data are all the other sources that are

not yet fully implemented in operational DA systems.

For radar, these include seven low-cost CASA X-band

FIG. 2. Upper-air 300-hPa observations, isotachs (blue and color-filled contours), streamlines (black

contours), and divergence (red contours) valid at (a) 1200UTC 3Apr and (b) 0000UTC 4Apr 2014.
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radars deployed in the DFW test bed, as well as C-band

Terminal Doppler Weather Radars (TDWRs) available

at major airports.

Nonconventional surface observations include CWOP,

ERNET, and MoPED. CWOP data come from a volun-

teer group who transmit weather data using the Auto-

matic Position Reporting System as a Weather Network

(APRSWXNET; Chadwick 2014). These observations are

found near volunteers’ homes, backyards, and businesses.

They are ingested into the Meteorological Assimilation

Data Ingest System (MADIS) and subject to the same

quality control checks as other datasets within MADIS

(Miller et al. 2005). ERNET is a network of over 8000

surface observations across the country, initially installed

near public schools and buildings for real-time weather

data used during television broadcasts. These data are also

ingested via MADIS and available for experiments within

the test bed. Both CWOP and ERNET were installed

without enforcing siting standards that ASOS and AWOS

employ. As such, they may exhibit additional representa-

tiveness errors and biases, such as the low wind speed bias

noted by Carlaw et al. (2015). MoPED data are weather

sensors mounted on trucking fleets. Global Science and

Technology (GST) started the program in 2009 in part-

nership with NOAA and the National Mesonet Program

(Dahlia 2013). These sensors provide measurements of

pressure, temperature, humidity, and precipitation. There

are a few other nonconventional mesonet-type observa-

tionswithin theMADISdataset that are separate fromany

previously mentioned. These observations are still used

during the assimilation procedure described in the next

section; however, they are not a primary focus of this

study, so they have been separated into a miscellaneous

nonconventional category.1

3. Experiment setup

a. Model configurations and initial ensemble

The model chosen for this study is the Weather Re-

search and Forecasting (WRF) Model, specifically

version 3.7 of the Advanced Research WRF (ARW)

FIG. 3. Surface map of observations with approximate locations of cold front (blue line with

triangles), stationary front (mixture of blue triangles and red scallops), and dryline (brown

scalloped line) valid 1607 UTC 3 Apr 2014.

1A comprehensive list of mesonet data providers within MADIS

can be found at http://madis.noaa.gov/mesonet_providers.html. In

and near the DFW test bed, these observations include AIRNow

(www.airnow.gov), HADS2 hydrometeorological observations

(http://hads.ncep.noaa.gov/WhatIsHADS.html), observations

gathered from the MesoWest cooperative mesonet project (https://

mesowest.utah.edu), Remote Automated Weather Stations (RAWS;

https://raws.nifc.gov), GPS-Met (https://madis.noaa.gov/madis_gpsmet.

shtml), and Lower Colorado River Authority (LCRA) Hydromet

observations (https://hydromet.lcra.org).
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core (Skamarock and Klemp 2008). The ensemble

used here was initialized from a combination of

ensemble members from other systems, shown

in Table 2. The ensemble IC was provided by

interpolating each ensemble member at 0300 UTC

3 April 2014 to the 12-km outer grid centered over

north Oklahoma (Fig. 6). The inner grid has 2.4-km

horizontal grid spacing, centered over the DFW

FIG. 4. FortWorth, TX (FWD), sounding and hodograph (upper-right corner) valid 1200UTC 3Apr 2014, taken

from the SPC Experimental Sounding Analysis System, which uses sounding analysis program NSHARP

(Thompson and Hart 2017).
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test bed. This grid is initialized at 1500 UTC 3 April

2014 using two-way nesting within the WRF. Prior

to any DA on the inner grid, an hour of model in-

tegration was performed to allow the model to spin up

the small-scale processes that can be resolved on the

2.4-km grid (Fig. 7).

Table 2 summarizes the different model settings

for the WRF, including all parameterization schemes

used for the outer and inner grids. Cumulus parame-

terization is only used on the outer grid, with four

schemes evenly mixed throughout the ensemble,

similar to that done by Johnson andWang (2017). The

Mellor–Yamada–Nakanishi–Niino (MYNN) PBL

scheme was chosen in part based on results from

Coniglio et al. (2013), who found that the MYNN

scheme is approximately unbiased when verified

against sounding observations in terms of PBL depth,

potential temperature, and moisture. The MYNN

scheme was unique among local schemes, as others

tended to produce too shallow and moist PBLs. The

Thompson microphysics scheme in combination with

the MYNN PBL scheme produced forecasts with

storm mode most closely matching reality for the case

study here.

b. Data assimilation settings

The DA system chosen for this study is the Gridpoint

Statistical Interpolation analysis system (GSI)-based

EnKF extended to directly assimilate radar observa-

tions (Johnson et al. 2015; Wang and Wang 2017). The

GSI-based EnKF uses the ensemble square root filter

(EnSRF) introduced by Whitaker and Hamill (2002).

On the outer domain, following a 3-h spinup forecast

period, four 3-hourly cycles were performed at 0600,

0900, 1200, and 1500 UTC using conventional observa-

tions except radar to better simulate the mesoscale en-

vironment (Fig. 7). For these analyses, first guess at

appropriate time (FGAT; e.g., Massart et al. 2010) was

used with model first-guess fields output every 30min

until the end of the DA cycling window (1.5 h after

analysis time). Observations within the 3-h window

are then compared to a first-guess field that has been

linearly interpolated in time from the nearest 30-min

output to the observation time. On the inner grid, 5-min

FIG. 5. (a)–(e) Observed digital hybrid reflectivity from terminal Doppler radar TDAL, valid at 1829, 1911, 2008, 2044, and 2144 UTC,

respectively. (f) SPC severe hail reports (triangles) andmPINGhail reports (asterisks) between 1800 and 2200UTC.Redmarkers indicate

significant hail reports greater than 2 in., andmagenta lines indicate the 30-dBZ contour of maximumobserved composite reflectivity over

the 1800–2200 UTC time period.
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cycling is used to capture rapidly evolving storm-scale

structures within the DA system. In addition to con-

ventional observations, nonconventional surface ob-

servations and NEXRAD radar radial velocity and

reflectivity are also assimilated on the inner grid.

The purpose of the radar DA is to capture existing

convection within the 1600–1800 UTC time period and

eliminate any spurious convection that develops within

the model. Both precipitation and clear-air reflectivity

observations are assimilated from the 15 radars shown in

Fig. 6. Past studies have shown assimilating clear-air re-

flectivity to be effective in suppressing spurious cells (e.g.,

Tong andXue 2005;Aksoy et al. 2009).Here, we consider

the precipitation threshold to be 15dBZ. Any observa-

tion less than 5dBZ was set to 0dBZ, the clear-air value.

Additionally, any first-guess reflectivity value less than

0dBZ was reset to 0dBZ to ensure clear-air reflectivity

could only have the effect of precipitation suppression.

Note that there is a gap between 5 and 15dBZ where the

reflectivity observationswere ignored (not assimilated) to

prevent overlap in assimilation of precipitation and clear-

air observations near the edges of precipitation.

Covariance localization is used to ameliorate sam-

pling error caused by having too few ensemble members

relative to the model degrees of freedom (Houtekamer

and Mitchell 1998, 2001). This study employs the com-

monly used Gaspari and Cohn (1999) function, a

Gaussian-like function with an explicit cutoff radius.

For the outer grid, a cutoff radius of 700 km was used

horizontally, the same as by Johnson et al. (2015). On

the inner grid, horizontal localization is varied

dependent on observation type and network density,

summarized in the last column of Table 3. For radar, the

20-km cutoff is the same as used by Johnson et al. (2015)

and similar to the 18-km radius of Sobash and Stensrud

(2013). For Oklahoma and West Texas Mesonets, we

chose 80 km to allow some overlapping of localization

functions based on their average station separation

(35 km). A 40-km localization radius was chosen for

nonconventional surface observations (e.g., CWOP,

ERNET) because they have much denser networks,

particularly near major cities. In SS15, a 60-km locali-

zation cutoff radius was used for all mesonet observa-

tions, so the values here are similar but more accurately

reflect the different station density within the surface

mesonet systems. Madaus and Hakim (2017) suggest an

even smaller radius (15 km in their case) may be nec-

essary for capturing features leading to discrete CI,

in the absence of strong mesoscale or synoptic-scale

forcing; however, additional research in optimal locali-

zation (and inflation) requirements is still needed.While

it is unclear if 40-km localization is small enough to re-

solve convective-scale features leading to CI, it should

still allow nonconventional observations to help resolve

smaller meso-b-scale features associated with the dry-

line. Vertical localization cutoff for all observations was

set to 0.55 in natural log pressure coordinates (approx-

imately 4.5 km AGL over the DFW test bed).

Another error source that must be accounted for is

intrinsic model error that is not represented within

the ensemble. Covariance inflation methods can be

used to correct for model error. Two methods of

TABLE 1. All observing platforms available within the DFW test bed as of 2017. ‘‘Used’’ column represents whether that observation

platformwas used in this study (Y) or not (N); N/Ameans ‘‘not available for this study.’’ The last column specifies whether the platform is

considered a ‘‘conventional’’ or ‘‘nonconventional’’ dataset.

Observation Type Provider Used?

Conventional (C) or

nonconventional (NC)?

NEXRAD S-band radar NWS Y C

TDWR C-band radar FAA N NC

CASA X-band radar CASA N NC

MDCRS/ACARS Aircraft Airlines via MDCRS/ACARS Y C

Radiosonde Weather balloon NWS Y C

NOAA Profiler Network Wind profiler NOAA Y C

GPS PWV Precipitable water vapor Suominet Y C

ASOS/AWOS Surface NWS and FAA Y C

Oklahoma Mesonet Surface Oklahoma Climatological Survey Y C

West Texas Mesonet Surface Texas Tech University Y C

CWOP Surface NWS Y NC

ERNET Surface Earth Networks Y NC

Understory Surface and hail Understory N (N/A) NC

Other mesonet Surface Miscellaneous federal/state agencies Y NC

MoPED Surface GST Y NC

SODAR Wind profile WeatherFlow N (N/A) NC

Radiometer Thermodynamic profile Radiometrics via Earth Networks N NC
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covariance inflation are applied as in Johnson et al.

(2015): a height-dependent multiplicative inflation

and relaxation to prior spread (RTPS; Whitaker and

Hamill 2012). Further details on these inflation methods

can be found in Johnson et al. (2015).

c. Observation processing and quality control

All conventional observations minus radar were

obtained from the NAM Data Assimilation System

(NDAS) in PREPBUFR format. These observations

were put through various automated quality control

(QC) checks within the PREPBUFR processing (Keyser

2017). Nonconventional surface observations were ob-

tained through MADIS and subjected to the same QC

checks within the MADIS system, which uses sev-

eral levels of checks including temporal and spatial

consistency. Only MADIS observations that passed

all levels of QC checks are assimilated in our

FIG. 6. WRFModel two-way nested grid setup. Outer domain has 12-km horizontal resolution,

and inner grid (d02) has 2.4-km horizontal resolution (5:1 ratio). Dots indicate locations of

WSR-88Ds used during inner-cycle DA, with circles representing 200-km ranges for each radar.

TABLE 2. WRF Model settings and physics parameterization schemes.

WRF setting Option chosen

Number of ensemble members 43

Initial conditions SREF (21members); GEFS (21members); NAM(1member)

at 0300 UTC 3 Apr 2014

Horizontal grid (outer domain) 250 3 180, Dx 5 12 km

Horizontal grid (inner domain) 351 3 351, Dx 5 2.4 km

Vertical grid 50 levels, ptop 5 50 hPa

Cumulus scheme Outer: Mixed

Kain–Fritsch (Kain 2004)

Betts–Miller–Janjić (Janjić 1994)

Grell–Freitas ensemble (Grell and Freitas 2014)

Grell 3D ensemble (Grell and Dévényi 2002)
Inner: None

PBL scheme MYNN level 2.5 (Nakanishi and Niino 2009)

Microphysics scheme Thompson (Thompson et al. 2008)

LW radiation scheme Rapid Radiative Transfer Model for global climate models

(RRTMG; Iacono et al. 2008)

SW radiation scheme New Goddard (Chou and Suarez 1999)

Land surface scheme Noah (Tewari et al. 2004)
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experiments. As in Johnson et al. (2015), radar ob-

servations were processed using the Warning De-

cision Support System–Integrated Information (WDSS-II;

Lakshmanan et al. 2007) software. The GSI system itself

performs additional QC gross error checks based on

the ratio of the observation innovation to the obser-

vation error for a given observation.

An important consideration for this work is how to

specify observation error values. Carlaw et al. (2015)

showed that misspecification of error—in their case,

specifying CWOP data to be as accurate as ASOS

data—led to degradation in verification scores. Values

for initial observation error are shown in Table 3. They

were based on similar values used by Carlaw et al. (2015)

but further tuned for the GSI system. These values are

initially smaller than what was used by Carlaw et al.

(2015) because the GSI automatically adjusts (inflates)

observation errors based on mismatches between obser-

vation pressure and the first-guess pressure, including a

higher penalty if the observation is below the model

terrain height. Since nonconventional data have en-

hanced siting issues more often than conventional data,

they more frequently have large differences in observed

pressure compared to the model first-guess pressure. The

automatic observation error inflation within GSI is pro-

portional to these pressure differences, and as a result, the

error inflation for nonconventional observations is gen-

erally higher.

d. Data denial experiment setup

Data denial experiments were done within the 5-min

DA cycling from 1600 to 1800 UTC on the inner grid

(Fig. 7). The locations of all observations assimilated

within this period are shown in Fig. 8. Surface data are

abundant within the DFWmetroplex. Near the dryline,

the observations are sparser, though there is some

coverage of nonconventional observations. The tem-

poral interval of surface observations varies by data-

set. ASOS and AWOS were available every 20min,

and ERNET and conventional mesonets every 5min.

CWOP data were more intermittent; most locations

had observations available every 5 min, others ev-

ery 10–15 min, and some remote locations reported

less frequently. The miscellaneous mesonet data

had a variety of reporting intervals, from 15min to

just hourly.

FIG. 7. Cycled DA experiment diagram. On the outer grid, after 3-h spinup, four 3-hourly DA cycles of conventional observations were

performed, and inner grid was initialized at 1500 UTC. After 1-h spinup, 5-min DA cycling of all observations was performed for 2 h

(1600–1800 UTC). Free ensemble forecast was initialized at 1800 UTC and run for 3 h.

TABLE 3. Initial observation error table values used for surface and radar datasets. Last column indicates localization scale used for each

data source.

Data source Ps (hPa) T (8C) RH (%) uy (m s21) Z (dBZ) VR (m s21) Localization scale (km)

NEXRAD — — — — 5.0 2.0 20

ASOS/AWOS 0.5426 0.8 2.705 1.5 — — 200

OK/WTX Mesonet 0.75 1.0 3.5 1.5 — — 80

ERNET 1.125 1.5 5.0 2.0 — — 40

CWOP 1.5 2.0 7.0 2.5 — — 40

MoPED 1.125 1.5 5.0 — — — 40

Miscellaneous mesonet 1.125 1.5 5.0 2.0 — — 40

NOVEMBER 2018 GASPERON I ET AL . 3855

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/19/23 04:43 PM UTC



FIG. 8. (a) Locations of all observations assimilated on inner domain between 1600 and 1800 UTC. (b) All surface

observations available from 1600 to1800 UTC, zoomed into the DFW region.
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All data denial experiments are listed in Table 4. The

control experiment (CNTL) uses all available data.

Experiment NOSFC is a baseline experiment to evalu-

ate effects of not using any surface data on the inner-

domain DA for the CI forecast (outer-domain DA is

left unchanged), while NONEWSFC denies just non-

conventional surface observations in DFW. Other

denial experiments are performed to evaluate the

relative impacts of each observational dataset. The

experiment denying ASOS data (denyASOS) is pre-

sented as another point of comparison with the other

nonconventional denials. Finally, given that Carlaw

et al. (2015) showed the majority of positive benefit

coming from thermodynamic variables, an experi-

ment denying just wind information from CWOP and

ERNET (denyCWwnd) is also considered to separate

out the relative impacts from thermodynamic and wind

observations.

e. Methods for assessing forecast quality

There are a fewmethods of evaluating the experiment

forecast output for CI. First, we use a subjective evalu-

ation of ensemble probability of composite reflectivity

(CREF) exceeding 35dBZ for various time intervals.

This threshold is common for identification of active

ongoing convection (e.g., Roberts and Rutledge 2003).

Since this is an extreme hail event for the DFW test

bed, another method of evaluation is the exami-

nation of maximum hail size produced within the

model throughout the 3-h free forecast. Given larger

uncertainty in hail prediction, we employ a neigh-

borhood ensemble probability (NEP) method: for

each ensemble member, the fraction of points ex-

ceeding the threshold value within a neighborhood

radius is calculated at all model grid points then av-

eraged across all ensemble members (Schwartz et al.

2010). For hail, two thresholds are considered: 10 and

25mm. The former is used as the lower limit of hail,

slightly larger than pea size; the latter is approxi-

mately the threshold for severe hail used by the U.S.

National Weather Service. The NEP output is

compared with SPC and mPING report locations

gathered between 1800 and 2100 UTC. Differences in

near-surface fields relative to the CNTL help to di-

agnose the differences seen in the CI performance

among denial experiments, in addition to compari-

sons of root-mean-square differences (RMSDs) and bias

statistics.

4. Results

a. Evaluation of CNTL experiment

The evolution of the severe weather event on the in-

ner domain is shown in Fig. 9. In addition to the two

supercells in the DFW region, another area of CI is

observed in northeast Oklahoma along the advancing

cold front between 1800 and 1900UTC (Figs. 9a,b). This

line of storms stretches southwest into central Okla-

homa. Another area of CI occurs in southwest Texas

between 1900 and 1930 UTC. Throughout the 3-h free

ensemble forecast, CNTL captures the Oklahoma line

of storms with very high confidence, as probabilities are

shown exceeding 90% for a large portion of the line and

as high as 100% for an early part of the line (Fig. 9c).

There is less confidence in the southwestern extent of

the line, but still over half the ensemble members in-

dicate convection extending that far south. The storms

of interest near Dallas are also captured very well in this

3-h view, with probabilities exceeding 90%. Convec-

tion also initiates to the southwest in the ensemble

and appears overaggressive, compared to reality.

There are additional points of observed CI in this area

after 2100 UTC (not shown), so we consider this fore-

cast reflectivity to be early CI rather than completely

spurious.

Within the DFW region, the ensemble shows CI ac-

tivity very quickly after the 1800 UTC final analysis

time, as shown in the top row of Fig. 10. Already

10–20min into the forecast, probabilities of CREF $

35 dBZ as high as 90% are seen in southwest Wise

County, centered less than 10 km from the actual CI

TABLE 4. Summary of surface data denial experiments.

Experiment name ASOS/AWOS OK/WTX Mesonet ERNET CWOP MoPED Miscellaneous mesonet

CNTL Yes Yes Yes Yes Yes Yes

NOSFC No No No No No No

NONEWSFC Yes Yes No No No No

denyASOS No Yes Yes Yes Yes Yes

denyERNET Yes Yes No Yes Yes Yes

denyCWOP Yes Yes Yes No Yes Yes

denyCW Yes Yes No No Yes Yes

denyMISC Yes Yes Yes Yes Yes No

denyCWwnd Yes Yes Yes (thermo) Yes (thermo) Yes Yes
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location (Fig. 10a). Probabilities remain above 70% by

1850 UTC with a general collocation with the actual

storm extent (Fig. 10c). There are, however, spurious CI

locations nearby, with a couple areas to the northeast

showing probabilities greater than 50% in the ensemble.

By 1850 UTC, the swath of probabilities exceeding

30% extends from southwest Wise County up to the

Oklahoma–Texas border (Fig. 10c).

The output of maximum hail size NEP is shown in

Fig. 11. The ensemble has high confidence in hail ex-

ceeding 10mm and covers nearly all hail reports with

above 50% probability (Fig. 11a). There is a slight

northern bias to the hail swath, however, as probabilities

above 70% extend as far north as Oklahoma. With the

higher severe threshold of 25mm, probabilities are sig-

nificantly reduced. There are two distinct centers of

probability exceeding 50%. The first is in southwest

Wise County, just to the southwest of the hail reports—

an indication that the model grew the storms too quickly

and aggressively, compared to reality. The second peak

is stronger and covers a larger area, with the center

approximately 20–30 km northeast of the maximum

hail size reports located in Denton, Texas. Despite the

small location errors, the CNTL ensemble was able to

predict with high confidence severe hail in the north

DFW region. In summary, despite some premature

CI in west Texas, the CNTL experiment successfully

forecast the storms near the area of focus for this

study—the DFW test bed—very similar to what hap-

pened in reality in terms of CI location, timing, and

storm mode. The credibility of denial experiments

within OSE studies relies on having a CNTL experi-

ment that is accurate.

b. Evaluation of denial experiments

In addition to CNTL, experiments denyASOS and

NOSFC are shown in Fig. 10. As seen in Figs. 10d–f,

there is a substantial impact in the CI forecast from

denying ASOS and AWOS observations, with the main

area of CI shifted about 65 km to the northeast, close

to the Oklahoma border. Additionally, this CI was

delayed by about 15min, compared to the CNTL. A

much larger negative impact is seen when assimilating

no surface observations (Figs. 10g–i), where minimal

CI occurs in the ensemble within the first hour. This

result of experiment NOSFC is an important baseline

to show the impact that any surface observations have

on the CI forecast—in this case, CI is highly sensitive

to surface observations. Comparing NOSFC to de-

nyASOS, we can infer that nonconventional observa-

tions have added significant value in capturing CI, even

though there are larger timing and location errors in

denyASOS than CNTL.

FIG. 9. (a),(b) Observed composite reflectivity mosaic valid 1930

and 2030 UTC 3 Apr 2014, respectively. (c) Ensemble probability

of maximum 3-h (1800–2100 UTC) composite reflectivity$35 dBZ

(%), with observed 35-dBZ maximum 3-h composite reflectivity

(black contours).
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Ensemble probabilities of CREF $ 35dBZ for exper-

iments denying nonconventional observations are shown

in Fig. 12. The differences are generally smaller than the

differences shown in Fig. 10; however, there are still some

notable effects. When denying all nonconventional data

(NONEWSFC), the CI in southwest Wise County is re-

duced in probability to below 40%, though two additional

CI points just south and southwest show probabilities in

the 40%–50% range. Additionally, a spurious point of CI

occurs by theOklahoma border, with probabilities over

80% (Fig. 12a). This storm dissipates rapidly within

the ensemble. For experiment denyERNET, there are

many more spurious CI locations within the ensemble;

additionally, the Wise County CI shows probabilities

no higher than 60%, which is a small reduction,

compared to CNTL (Figs. 12d–f). On the other hand,

denyCWOP shows a marked reduction in the number

of spurious CI points within theDFWregion, though the

CI inWise County is reduced 10%more in probability, as

compared to denyERNET. Taken together, there are

mixed signals in positive and negative impacts. We

can infer that CWOP data are important in establishing

the CI in Wise County; however, CWOP also contribute

to the amount of spurious CI in the ensemble. While

ERNET data have a bit less impact on the CI itself, they

do help counteract the spurious activity.

FIG. 10. Ensemble probability of 10-min maximum composite reflectivity greater than 35 dBZ for experiments (a)–(c) CNTL,

(d)–(f) denyASOS, and (g)–(i) NOSFC. Magenta contour indicates observed maximum 10-min composite reflectivity for each time

period indicated.
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When looking at NEP of maximum hail $10mm

(Fig. 13), denyASOS is again displaced to the north-

east, close to the Oklahoma border. Denying ERNET

has a minor effect on the 10-mm hail forecast, but de-

nying CWOP data constrains the hail swath to more

closely match the report locations, eliminating much

of the northerly extent of hail (Fig. 13c). Experiment

NONEWSFC shows reduced probabilities—less than

70%—and smaller hail swaths, though the location is

still closer to the hail reports. A similar pattern can

be seen with the NEP of 25-mm hail (Fig. 14). There

is a small northeast displacement of the maximum

hail probability in denyERNET, and probabilities are

reduced slightly (around 10%), compared to CNTL

(Fig. 14b). There is less displacement in denyCWOP, but

the probabilities are again reduced by around 10%,

compared to CNTL (Fig. 14c). In NONEWSFC, less

than 1/4 of ensemble members show severe hail, which

is as much as 40% lower than the CNTL (Fig. 14d);

less than 15% of ensemble members have severe hail

in NOSFC (Fig. 14f).

c. Evaluation of surface fields

Since CI is especially sensitive to boundary layer

moisture for dryline cases, it is important to look at the

surface moisture field to gain insight into some of the

differences shown in the ensemble probability fields.

Dewpoint temperature for the final mean analysis is

shown for CNTL and NOSFC in Figs. 15a and 15b, re-

spectively. The actual dryline placement error is not

very large in NOSFC, compared to CNTL. However,

there are several other notable differences in the

dryline that led to much smaller location and timing

errors of CI in CNTL. First, the dryline in CNTL has

stronger gradients and shows higher values of moisture

in general. The dryline in NOSFC is overmixed and has

coarser gradients; as a result, a large part ofWise County

(blue rectangle) and counties to its southwest are much

drier than CNTL, which has an accurate depiction of

moisture, compared to nearby observations. Addition-

ally, there are important kinks in the dryline in CNTL

that are not as apparent in NOSFC. Several studies have

linked CI to dryline bulges and kinks such as that seen

in CNTL (e.g., Hane et al. 1997, 2002; SS15; Hill et al.

2016). Near the CI location, the local dryline is ap-

proximately east–west in orientation in CNTL, whereas

in NOSFC, no such small-scale variation exists. Because

of the east–west local variation, an area of enhanced

convergence exists owing to the largely southerly flow in

the moist regime being locally perpendicular to the

dryline. Additionally, there appears to be a small pocket

of enhanced moisture in that location.

Of course, it can be challenging to look at a mois-

ture plot and simply point to an exact location of

CI. Not all dryline kinks result in convection. One

avenue to address this is to look at plots of mois-

ture flux convergence (MFC) to identify favorable

areas of CI (Banacos and Schultz 2005). While the

utility of a snapshot of MFC is questionable in a

forecasting sense, it can be used as an important visual

tool for CI case studies. One example is Xue and

Martin (2006a,b), who, with the aid of MFC plots,

FIG. 11. Neighborhood ensemble probability of maximum hail size in the entire column exceeding (a) 10 and (b) 25mm for the entire

3-h forecast period (1800–2100UTC) plotted for theCNTL experiment using a neighborhood radius of 9.6 km. Triangles indicate SPC hail

reports, and asterisks indicate mPING hail reports, sized according to size of the hail reported. Wise County, TX, is highlighted by the

blue box.
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developed a conceptual model for dryline CI that posits

locations of enhanced convergence that occur at in-

tersections between boundary layer convective rolls

and the primary dryline convergence band. It is possi-

ble the east–west kink in Fig. 15a is a reflection of

such a process, though the horizontal resolution of this

forecast is too coarse to fully resolve convective rolls in

the PBL.

A drawback of MFC is that it only reflects a single

level, while CI is a 3D process that requires enough

convergence to lift parcels to the level of free convec-

tion. Plots of MFC along the dryline often show many

areas of enhanced convergence; thus, it may not dis-

criminate very well between areas where CI occurs and

where it does not. For this reason, we have instead

plotted vertically integrated MFC (VIMFC) over the

lowest 2 km of the atmosphere to reflect the amount

of forced lifting in the PBL. VIMFC was explored as

a discriminator on synoptic scales by van Zomeren

and van Delden (2007); however, to the best of our

knowledge, it has not been used for convective scales.

VIMFC is analogous to precipitable water in that it re-

flects the depth ofwater vapor between two vertical levels

if it condensed at the bottom of a column with a 1-m2

base; in the case of VIMFC, it reflects the liquid

equivalent depth of water entering the column per

second. As seen in Fig. 15c, CNTL has a strong center

of VIMFC associated with the east–west local kink

near Wise County, indicating that this location is

strongly favored for CI; this helps explain why timing

FIG. 12. As in Fig. 10, but for experiments (a)–(c) NONEWSFC, (d)–(f) denyERNET, and (g)–(i) denyCWOP.
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FIG. 13. As in Fig. 11a, but for denial experiments (a) denyASOS, (b) denyERNET, (c) denyCWOP, (d) NONEWSFC, (e) denyMISC,

and (f) NOSFC.

3862 MONTHLY WEATHER REV IEW VOLUME 146

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/19/23 04:43 PM UTC



FIG. 14. As in Fig. 11b, but for denial experiments (a) denyASOS, (b) denyERNET, (c) denyCWOP, (d) NONEWSFC, (e) denyMISC,

and (f) NOSFC

NOVEMBER 2018 GASPERON I ET AL . 3863

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/19/23 04:43 PM UTC



and location errors were very small in CNTL for this

cell. On the other hand, VIMFC shows little to no fa-

vorable CI areas in NOSFC (Fig. 15d).

Difference fields of dewpoint are shown in Fig. 16

to help show the origins of the enhanced VIMFC.

Overlaid on these difference plots are the denied ob-

servations minus the analysis, which can be thought of

as the observation innovation that the denied observa-

tions would have had if they were assimilated in the

denial experiment. The goal of this is to clearly tie the

differences between the CNTL and denial experiments—

which include nonlinear effects of model integration—to

the actual observations had they been assimilated. From

Fig. 16a, there are a few ERNET observations up-

stream of the CI location in relatively data-sparse

locations that help feed moisture to the CI location.

The CWOP data—which had a larger impact on the

CI probability—have fortuitous data coverage near

the CI location to help capture that east–west kink in

the dryline, as locally there are dry and moist obser-

vations directly north and south of each other right

next to that CI location (Fig. 16b). ASOS data, which

had the largest impact of the surface datasets, can be

seen to have more broad-scale impacts in Fig. 16c,

which helps to constrain the gradient and location

of the dryline from the overmixing tendency found

within NOSFC.

Finally, the miscellaneous mesonet data had a sur-

prising impact on themoisture field, as observations well

southwest of the CI location were found to feed directly

to that location in a ‘‘river of moisture’’ after 2 h of

model integration. Denying these data did have a

slightly larger negative impact in terms of severe hail

(Fig. 14e) than either denyCWOP or denyERNET.

FIG. 15. (a),(b) Final analysis mean 10-m dewpoint temperature (color fill) and wind (vectors), valid 1800 UTC 3 Apr 2014, for

experiments CNTL and NOSFC, respectively. Color-filled dots indicate observed-minus-analysis moisture values (specific humidity;

g kg21) from all surface observations at 1800 UTC. (c),(d) Vertically integrated moisture flux convergence (mmH2O s21) computed

for the lowest 2 km above ground level, with wind (vectors) at 2 km above ground, valid 1800 UTC 3 Apr 2014 for experiments CNTL

and NOSFC, respectively. Thick brown line indicates approximate dryline location, and blue box indicates location of Wise

County, TX.
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These observations to the southwest were from a hy-

drometeorological observation network, located often

next to small lakes and streams.

In summary, Fig. 16 indicates that there is a cumulative

effect of all these different observations. Each network is

adding moisture in a different way. This helps explain

why the location and timing of CI were not greatly af-

fected by the nonconventional denials, but the ensemble

probabilities of CI and hail were reduced.

Error statistics for all experiments are shown in

Fig. 17, computed against all surface observations

available. The RMSD and biases shown before the start

of the free forecast (negative times) were calculated

using first-guess and analysis ensemble means during

DA cycling, creating a ‘‘sawtooth’’ appearance, while

the positive time period uses ensemble means from the

3-h free forecast period (1800–2100 UTC). Both tem-

perature and wind show little difference in RMSD

among all experiments during the free forecast, aside

from a small degradation in RMSD of wind for NOSFC.

Most of the notable differences occur in specific humid-

ity. Experiment NOSFC errors are generally 0.5 gkg21

higher than CNTL. Experiments denyCWOP and

denyCWwnd are generally lowest in RMSD, though the

differences are small, compared to CNTL. In terms of

bias, there tends to be a model dry bias in moisture on

the order of 0.5–1.0 g kg21. There is also a high wind

speed bias in the model, which may also be a reflection

of the low speed bias of the nonconventional data, as

discussed by Carlaw et al. (2015).

FIG. 16. Difference fields for ensemble mean 2-m dewpoint temperature (color fill) and 10-m wind (vectors) for final analysis time

1800 UTC 3 Apr 2014: (a) denyERNET minus CNTL, (b) denyCWOP minus CNTL, (c) denyASOS minus CNTL, and (d) denyMISC

minus CNTL. Color-filled dots indicate respective denied observations from each denial experiment for each plot, with colors and sizes

indicating theO2 A values (specific humidity; g kg21) for each denial dataset (i.e., what the observation innovations would have been if

denied observations were assimilated). Yellow star indicates approximate CI location, and blue outlines highlight relevant observations

influencing the CI forecast.
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d. Sensitivity to observation type

Carlaw et al. (2015) found the majority of impact from

nonconventional observations came from thermody-

namic information. On the other hand, SS15 found

slightly more impact on their CI forecasts from the wind

information. To find out which information has a larger

benefit for this case study, experiment denyCWwnd

was conducted, where only the wind observations from

CWOP and ERNET are denied but thermodynamic

variables are still assimilated. Compared with denyCW,

denyCWwnd matches much more closely with CNTL

(Fig. 18), with only a minor reduction in ensemble

probability within the first hour of the free forecast.

Interestingly, the forecast of hail is improved in

denyCWwnd for both 10- and 25-mm thresholds (Fig. 19).

In fact, the 25-mm NEP has improved by 10%

and shows a maximum probability slightly closer to

the significant hail reports in Denton. So in this case

FIG. 17. Time series RMSD and bias (model minus observations) of ensemble mean for all experiments, plotted for (a),(b) temperature;

(c),(d) dewpoint temperature; and (e),(f) wind. Note that the bias in (f) is wind magnitude bias only.
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study, it is clear that the thermodynamic information

from the nonconventional datasets—specifically,

moisture—is of greater importance than the wind

information.

What could be the cause of wind observations slightly

degrading the forecast? Previous studies focusing

on nonconventional mesonet observations have men-

tioned low wind speed bias concerns of wind measure-

ments, which is a potential source of degradation (Hilliker

et al. 2010; Carlaw et al. 2015). Another source can be

inferred from Fig. 17. Denying just the wind observa-

tions from CWOP and ERNET results in an almost

negligible difference in the forecast RMSD of wind—

an indication that the wind observations are not adding

much information in an average sense. Additionally,

the RMSD of specific humidity slightly improves over

the CNTL just from denying wind observations. Their

assimilation may only accumulate noise in the analysis

from the large number of observations being assimi-

lated. For example, at 1800 UTC, the variability of all

CWOP and ERNET wind speed observations shown in

Figs. 16a and 16b is about 1.6m s21. The ensemble

spread at each of these observation locations ranged

from 0.25 to 0.6m s21 (0.42m s21 average)—lower as a

result of the relatively homogeneous wind field where

the majority of CWOP and ERNET observations are

located. In other words, the variability of the ensemble

wind is actually smaller than the variability of the

nonconventional wind observations themselves, likely

due to siting issues.

FIG. 18. As in Fig. 10, but for denial experiments (a)–(c) denyMISC, (d)–(f) denyCW, and (g)–(i) denyCWwnd.
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5. Summary and discussion

While the number of studies assimilating surface

observations in addition to radar observations has in-

creased, there have been very few to examine the use

of surface mesonet observations on forecasts of CI.

Additionally, these mesonet surface observations are

typically taken as one observation source. In this study,

we examined the impacts of different systems of non-

conventional surface observations on the forecast of CI

for an extreme hail event in the DFW test bed (3 April

2014) using data denial experiments. The CNTL fore-

cast captured location and timing of CI within 15 km

and 15min, respectively, as well as produced hail

forecast probability swaths with maxima in severe hail

probabilities near the locations of the largest hail re-

ports, giving the OSE credibility for examination of

denial experiments. Our results indicated that while

nonconventional data sources did not have a very large

magnitude impact, compared with conventional surface

observations, they still had an important contribution to

the accurate prediction of CI and subsequent hail within

the ensemble. Each nonconventional dataset contained

observations from different locations that enhanced the

moisture near the CI location, leading to a cumulative

beneficial effect from all networks. These important ob-

servations were all located in advantageous areas just

along the dryline, bringing tomind a key result of Tyndall

and Horel (2013): ‘‘location, location, location.’’ They

found that observations located in data-sparse regions or

in regions with sensitive local weather patterns (i.e.,

coastal regions) had the biggest impact. Ensemble sensi-

tivity analyses (ESAs) can help reveal these advanta-

geous sensitive areas where observations can have an

impact, which can be used for observation targeting

FIG. 19. As in Fig. 11, but comparing NEP of max hail size exceeding (a),(b) 10 and (c),(d) 25mm for experiments (a),(c) CNTL and

(b),(d) denyCWwnd.
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purposes (e.g., Ancell and Hakim 2007; Torn and Hakim

2008; Hill et al. 2016). In particular, Hill et al. (2016)

performed an ESA on dryline forecasts of CI and found

large sensitivity in thermodynamic variables upstream of

the CI locations, particularly apparent in the dewpoint

gradient magnitude along the dryline where CI occurs.

Similarly, the most important observations in this study

were found within the dryline gradient, in areas where

observations were relatively sparse compared to the

dense observations in the most populous parts of DFW.

Additionally, high-moisture observations found up-

stream near the gradient (e.g., Fig. 16d) had a positive

impact on the resulting CI and storm evolution forecast

within CNTL.

The high-frequency assimilation of surface observa-

tions assisted in reducing moisture biases near the dry-

line that were prevalent in the model, similar to SS15.

The ASOS and AWOS data largely constrained the

dryline position and gradient strength, preventing

the model from overmixing the dryline and causing the

surface to be too dry in areas where CI occurred in re-

ality. The addition of nonconventional observations

helped to define the important small-scale features in

drylines that are often the foci of CI. In this case, CWOP

observations helped to define a small east–west kink in

the dryline over Wise County, Texas, that allowed for

the southerly flow within the moist regime to be more

normal to the dryline, enhancing convergence and lift.

While the potential value of assimilating CWOP is

intriguing, there are many issues that remain a chal-

lenge. Despite the positive result in CI, it was also clear

that assimilating CWOP led to additional spurious

convection, an indication that CWOP observations are

noisy due to data quality issues. The siting concerns of

CWOP prevent it from being optimally utilized. Nearly

10% of the CWOP observations in the domain of this

study were flagged with having a reported elevation

significantly different than the model terrain; some

may be an inaccuracy in reported elevation (such as

reporting in feet rather than meters), but others could

be a misreported location. In their study assimilating

dense pressure observations, Madaus et al. (2014) ap-

plied an ‘‘elevation comparison check’’ that rejected

approximately 15% of their observations for having a

difference of greater than 200m in observed elevation,

compared to the model terrain. While the GSI auto-

matically handled these siting issues within its QC

scheme, it still leaves some untapped potential into fully

utilizing these nonconventional observations.

Despite the issues with nonconventional observations,

this case study was still important in quantifying the

value we can get from these surface observations in our

DA systems. They truly can give us the small-scale

information that is necessary to pinpoint the correct

location for CI in a dryline case. The caveat is this is just

one case study, though an important high-impact case.

Many more cases need to be examined utilizing non-

conventional observations, or perhaps a month-long

quasi-real-time study. Additionally, biases over time of

nonconventional networks should be examined and

corrected, similar to the bias correction for surface

pressure observations by Madaus et al. (2014).

Finally, this work lays the foundation for examining

the application of the ensemble forecast sensitivity to

observations (EFSO; Kalnay et al. 2012; Gasperoni and

Wang 2015) on the convective scale. The EFSO can

estimate impact from subsets of observations without

the need for expensive data denial experiments, but is

limited by the need for more complex localization

methods to ensure accurate estimates (e.g., Gasperoni

and Wang 2015). In future work, we plan on comparing

estimates obtained by EFSO with different adaptive

localization techniques to impact estimates obtained

from data denial experiments performed in this work.
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